EXERCISES

1. The Main Theorem of Galois Theory

- 1. Determine the irreducible polynomial for $i + \sqrt{2}$ over \mathbb{Q} .
- **2.** Prove that the set $(1, i, \sqrt{2}, i\sqrt{2})$ is a basis for $\mathbb{Q}(i, \sqrt{2})$ over \mathbb{Q} .
- **3.** Determine the intermediate fields between \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- 4. Determine the intermediate fields of an arbitrary biquadratic extension without appealing to the Main Theorem.
- **5.** Prove that the automorphism $\mathbb{Q}(\sqrt{2})$ sending $\sqrt{2}$ to $-\sqrt{2}$ is discontinuous.
- **6.** Determine the degree of the splitting field of the following polynomials over \mathbb{Q} . (a) $x^4 1$ (b) $x^3 2$ (c) $x^4 + 1$

ducible factors over each of the fields \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{2},i)$, $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\alpha,i)$.

- (a) $x^3 1$ (b) $x^3 2$ (c) $x^3 + 1$ 7. Let α denote the positive real fourth root of 2. Factor the polynomial $x^4 - 2$ into irre-
- **8.** Let $\zeta = e^{2\pi i/5}$.
 - (a) Prove that $K = \mathbb{Q}(\zeta)$ is a splitting field for the polynomial $x^5 1$ over \mathbb{Q} , and determine the degree $[K : \mathbb{Q}]$.
 - (b) Without using Theorem (1.11), prove that K is a Galois extension of \mathbb{Q} , and determine its Galois group.
- **9.** Let K be a quadratic extension of the form $F(\alpha)$, where $\alpha^2 = a \in F$. Determine all elements of K whose squares are in F.
- 10. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Determine $[K : \mathbb{Q}]$, prove that K is a Galois extension of \mathbb{Q} , and determine its Galois group.
- 11. Let K be the splitting field over \mathbb{Q} of the polynomial $f(x) = (x^2 2x 1)(x^2 2x 7)$. Determine $G(K/\mathbb{Q})$, and determine all intermediate fields explicitly.
- 12. Determine all automorphisms of the field $\mathbb{Q}(\sqrt[3]{2})$.
- 13. Let K/F be a finite extension. Prove that the Galois group G(K/F) is a finite group.
- 14. Determine all the quadratic number fields $\mathbb{Q}[\sqrt{d}]$ which contain a primitive pth root of unity, for some prime $p \neq 2$.
- 15. Prove that every Galois extension K/F whose Galois group is the Klein four group is biquadratic.
- 16. Prove or disprove: Let f(x) be an irreducible cubic polynomial in $\mathbb{Q}[x]$ with one real root α . The other roots form a complex conjugate pair β , $\overline{\beta}$, so the field $L = \mathbb{Q}(\beta)$ has an automorphism σ which interchanges β , $\overline{\beta}$.
- 17. Let K be a Galois extension of a field F such that $G(K/F) \approx C_2 \times C_{12}$. How many intermediate fields L are there such that (a) [L:F] = 4, (b) [L:F] = 9, (c) $G(K/L) \approx C_4$?
- 18. Let $f(x) = x^4 + bx^2 + c \in F[x]$, and let K be the splitting field of f. Prove that G(K/F) is contained in a dihedral group D_4 .
- Let $F = \mathbb{F}_2(u)$ be the rational function field over the field of two elements. Prove that the polynomial $x^2 u$ is irreducible in F[x] and that it has two equal roots in a splitting field.

- * (20) Let F be a field of characteristic 2, and let K be an extension of F of degree 2.
 - (a) Prove that K has the form $F(\alpha)$, where α is the root of an irreducible polynomial over F of the form $x^2 + x + a$, and that the other root of this equation is $\alpha + 1$.
 - (b) Is it true that there is an automorphism of K sending $\alpha \leftrightarrow \alpha + 1$?

2. Cubic Equations

- 1. Prove that the discriminant of a real cubic is positive if all the roots are real, and negative if not.
- 2. Determine the Galois groups of the following polynomials.

(a)
$$x^3 - 2$$
 (b) $x^3 + 27x - 4$ (c) $x^3 + x + 1$ (d) $x^3 + 3x + 14$

(e)
$$x^3 - 3x^2 + 1$$
 (f) $x^3 - 21x + 7$ (g) $x^3 + x^2 - 2x - 1$

- (h) $x^3 + x^2 2x + 1$
- 3. Let f be an irreducible cubic polynomial over F, and let δ be the square root of the discriminant of f. Prove that f remains irreducible over the field $F(\delta)$.
- **4.** Let α be a complex root of the polynomial $x^3 + x + 1$ over \mathbb{Q} , and let K be a splitting field of this polynomial over \mathbb{Q} .
 - (a) Is $\sqrt{-3}$ in the field $\mathbb{Q}(\alpha)$? Is it in K?
 - (b) Prove that the field $\mathbb{Q}(\alpha)$ has no automorphism except the identity.
- *5. Prove Proposition (2.16) directly for a cubic of the form (2.3), by determining the formula which expresses α_2 in terms of α_1 , δ , p, q explicitly.
- 6. Let $f \in \mathbb{Q}[x]$ be an irreducible cubic polynomial which has exactly one real root, and let K be its splitting field over \mathbb{Q} . Prove that $[K : \mathbb{Q}] = 6$.
- 7. When does the polynomial $x^3 + px + q$ have a multiple root?
- 8. Determine the coefficients p, q which are obtained from the general cubic (2.1) by the substitution (2.2).
- **9.** Prove that the discriminant of the cubic $x^3 + px + q$ is $-4p^3 27q^2$.

3. Symmetric Functions

- 1. Derive the expression (3.10) for the discriminant of a cubic by the method of undetermined coefficients.
- **2.** Let f(u) be a symmetric polynomial of degree d in u_1, \ldots, u_n , and let $f^0(u_1, \ldots, u_{n-1}) = f(u_1, \ldots, u_{n-1}, 0)$. Say that $f^0(u) = g(s^0)$, where s_i^0 are the elementary symmetric functions in u_1, \ldots, u_{n-1} . Prove that if n > d, then f(u) = g(s).
- 3. Compute the discriminant of a quintic polynomial of the form $x^5 + ax + b$.
- **4.** With each of the following polynomials, determine whether or not it is a symmetric function, and if so, write it in terms of the elementary symmetric functions.
 - (a) $u_1^2 u_2 + u_2^2 u_1$ (n = 2)
 - **(b)** $u_1^2u_2 + u_2^2u_3 + u_3^2u_1$ (n = 3)
 - (c) $(u_1 + u_2)(u_2 + u_3)(u_1 + u_3)$ (n = 3)
 - (d) $u_1^3 u_2 + u_2^3 u_3 + u_3^3 u_1 u_1 u_2^3 u_2 u_3^3 u_3 u_1^3$ (n = 3)
 - (e) $u_1^3 + u_2^3 + \cdots + u_n^3$
- 5. Find two natural bases for the ring of symmetric functions, as free module over the ring R.